Improving Nonpreemptive Multiserver Job Scheduling with
Quickswap

Zhongrui Chen '
jcpwfloi@cs.unc.edu

Andrea Marin f
marin@unive.it

Adityo AnggraitoT
adityo.anggraito@unive.it

. 1
Marco Ajmone Marsan
marco.ajmone@imdea.org

Diletta Olliaro f
diletta.olliaro@unive.it

*

Benjamin Berg
ben@cs.unc.edu

§
Isaac Grosof
izzy.grosof@northwestern.edu

ABSTRACT

Modern data center workloads are composed of multiserver
jobs that require multiple servers in order to run. Many mul-
tiserver jobs can run in parallel as long as there are enough
servers to satisfy the demand of each job. Given a stream of
arriving jobs, a scheduling policy must determine which jobs
to run at every moment in time to minimize the mean re-
sponse time across jobs — the average time from when a job
arrives to the system until it is complete. Because preemp-
tions are often computationally expensive in data centers,
the scheduling policy cannot preempt running jobs.

We propose a new class of non-preemptive policies called
Most Servers First with Quickswap (MSFQ). MSFQ policies
prioritize jobs that demand more servers. However, they
keep mean response time low by periodically granting pri-
ority to other jobs in the system. We prove conditions un-
der which MSFQ policies stabilize the system, and analyze
their mean response time. We prove that the MSFQ priority
switching mechanism allows these policies to greatly outper-
form state-of-the-art policies that rely on simpler priority
mechanisms. We validate our theoretical results via exten-
sive simulations using traces from the Google Borg system.

1. INTRODUCTION

Modern data centers serve multiserver jobs that occupy
multiple servers simultaneously. Each multiserver job is as-
sociated with a server meed, the number of servers the job
requires to run, and a service duration, the amount of time
the job must run to be completed. A set of multiserver jobs
can run in parallel only if the system has enough dedicated
servers for each job. A scheduling policy must select which
jobs to run in parallel at every moment in time. Given a
fixed number of servers, k, our goal is to choose a schedul-
ing policy that minimizes the mean response time across jobs
in a stream of arriving multiserver jobs — the average time
from when a job arrives to the system until it is completed.

*University of North Carolina at Chapel Hill, USA
JrUniversitéu Ca’ Foscari Venezia, Italy

iII\/IDEA Networks Institute, Spain

§Northwestern University, USA

Copyright is held by author/owner(s).

. MSF
E 80 —— nMSR
o First-Fit
ﬁ 60 —— MSFQ (Simulated)
o | o MSFQ (Predicted)
g
=1
g
=
0 1 2 3 6 7 8

4 5
Arrival Rate

Figure 1: Mean response times as a function of ar-
rival rates for MSFQ and competitor policies.

Designing scheduling policies for multiserver jobs is diffi-
cult for two reasons: (i) it is hard to utilize all servers in the
system due to bin-packing effects; (ii) modern multiserver
jobs are stateful, making preemptions costly or impossible.
This raises the question of how to design and analyze non-
preemptive scheduling policies that minimize the mean re-
sponse time across a stream of multiserver jobs.

To achieve high server utilization, prior work on schedul-
ing multiserver jobs has suggested prioritizing jobs with larger
server needs. Specifically, |3] evaluated the Most-Servers-
First (MSF) policy, a non-preemptive policy that prioritizes
jobs with larger server needs. MSF considers all jobs in de-
scending server need order. If there are enough servers to
satisfy a job, MSF puts this job into service.

To understand the pros and cons of MSF, consider an
example where jobs either need one server or k servers. We
refer to this as the one-or-all setting. Here, MSF serves jobs
in two alternating phases: (i) MSF serves k-server jobs until
none remain in the system; (ii) MSF serves 1-server jobs
until none remain before returning to serve k-server jobs.
We show in our full paper |1] that MSF achieves optimal
long-run average server utilization in the one-or-all setting.
Unfortunately, this high server utilization does not lead to
low mean response time. MSF suffers because, as the job
arrival rate increases, it takes an increasingly long time to
switch between phases. This creates a feedback loop where
1-server jobs accumulate while the system processes k-server
jobs, leading to a long phase of serving 1-server jobs during
which many k-server jobs accumulate.

To address the slow phase switching of MSF, we develop
a class of scheduling policies for the one-or-all setting called



Most Server First with Quickswap (MSFQ). We show that
MSFQ policies stabilize the system whenever it is possible
to do so (Theorem , and we analyze the mean response
time of MSFQ (Theorem. To evaluate MSFQ policies, we
compare them against MSF, First-Fit (an optimized first-
come-first-served policy), and a non-preemptive Markovian
Service Rate (nMSR) policy [2] (see Figure [I). We also
develop variants of MSFQ that process general multiserver
job workloads, and evaluate these variants using traces from
Google Borg [4] (see Figure [2)).

2. OUR MODEL

We consider a system with k servers. A multiserver job is
represented by an ordered pair (i, s), where i € {1,2,--- ,k}
is the number of servers the job needs to run and s is the
job’s service duration, the time the job must run on the
servers before completion. Jobs occupy a fixed number of
servers throughout their time in service, and a job in service
cannot be preempted. We refer to this job model as the
Multiserver Job (MSJ) model.

We consider workloads composed of several job classes,
where class-i jobs each require ¢ servers. We consider serv-
ing a stream of multiserver jobs, where class-i jobs arrive
according to an independent Poisson process with rate ;.
We further assume the service durations of class-i jobs are
i.i.d. exponentially distributed random variables such that
Si ~ exp(pi)-

A set of jobs can run in parallel if their aggregate server
demand does not exceed the number of available servers.
That is, let u = (u1,uz, -+ ,ur) denote a set of multiserver
jobs containing u; class-¢ jobs. These jobs can run in parallel
if and only if Z§:1 tu; < k.

3. MAIN RESULTS

We introduce the class of Most Server First with Quick-
swap (MSFQ) policies in the one-or-all setting. MSFQ pri-
oritizes jobs with high server needs, following similar service
phases as the MSF policy. However, to shorten the dura-
tions of each phase, an MSFQ policy is associated with a
threshold, ¢. Instead of serving class-1 jobs in phase 2 un-
til none remain, MSFQ serves class-1 jobs until there are ¢
jobs remaining in the system. At this point, MSFQ stops
admitting new class-1 jobs into service and completes the ¢
class-1 jobs in service. Once these jobs are complete, MSFQ
begins serving class-k jobs.

We show that, by using the threshold ¢ to abbreviate
phase 2, MSFQ policies can reduce the feedback loop that
leads to high mean response time under MSF. We first show
that MSFQ policies stabilize the system whenever it is pos-
sible to do so. That is, if it is possible to achieve a finite
mean response time, any MSFQ policy will have a finite
mean response time.

THEOREM 1. A Most Servers First with Quickswap (MSFQ)

policy with any threshold £, 0 < ¢ < k, stabilizes the system
whenever it is possible to do so in the one-or-all system.

ProoOF. We first show that no scheduling policy is sta-
ble if Ai/kpu1 + Ax/pr > 1 by comparing to a resource-
pooled system. Next, we show that our MSFQ policy is
stable given that Ai/kp1 + Ax/ux < 1 using a Lyapunov
drift argument. []

Next, we analyze the mean response time of an MSFQ policy
under the one-or-all setting.

£ 100000

= MSF

qé 80000 —— Adaptive Quickswap
& Static Quickswap

N

é’ 60000 First-Fit

g

2 40000

=

el

£ 20000

<

8o =

3 -

g 0 1 4 5

2 3
Arrival Rate

Figure 2: Mean response times as a function of ar-
rival rates for MSFQ and competitor policies using
Google Borg traces.

THEOREM 2. The mean response time under an MSFQ
policy, E[T], depends on the first and second moments of
the durations of each phase and the mean number of jobs at
the beginning of each phase. For a given MSFQ policy, we
can compute all of these quantities.

PRrROOF. We show that E[T] can be written in terms of
phase durations by conditioning on which phase a job arrives
during, and whether a job is a class-1 or a class-k job.

We then derive the Laplace transforms of the phase dura-
tions and the expected number of jobs at the beginning of
each phase. We use these transforms to compute the overall
mean response time. Although the transforms we derive are
recursively defined, we provide a calculatoﬂ that symbol-
ically differentiates these transforms to compute the mean
response time. []

4. EVALUATIONS

We evaluate the accuracy of our mean response time anal-
ysis and compare MSFQ with the MSF, nMSR and First-Fit
policies via simulations of the one-or-all setting. Figure [I]
shows that our analysis is accurate and that MSFQ outper-
forms all competitor policies at all arrival rates.

We also develop variants of MSFQ called Adaptive Quick-
swap and Static Quickswap that work outside of the simpli-
fied one-or-all setting. For this evaluation, we use simula-
tions driven by traces from the Google Borg cluster sched-
uler. Here, 86% of the system load is contributed by the
0.34% of jobs with the largest server needs. To ensure that
our scheduling policy does not ignore these important jobs,
we evaluate this trace using a weighted mean response time
metric that weights class-i jobs by the amount of load they
contribute to the system. We show that our policies per-
form favorably compared to all competitors on this weighted
mean response time metric (see Figure .

5. REFERENCES

[1] CHEN, Z., ANGGRAITO, A., OLLIARO, D., MARIN, A,
MARSAN, M. A., BERrRG, B., AND GROSOF, I.
Improving nonpreemptive multiserver job scheduling
with quickswap. Performance Evaluation (2025).
CHEN, Z., GROSOF, 1., AND BERG, B. Improving
multiresource job scheduling with markovian service
rate policies. POMACS 9, 2 (2025), 1-36.

SPEITKAMP, B., AND BICHLER, M. A Mathematical
Programming Approach for Server Consolidation
Problems in Virtualized Data Centers. IEEE
Transactions Services Computing 3, 4 (2010), 266-278.

[2

3

"https://github.com/jcpwiloi/msfq-calculator


https://github.com/jcpwfloi/msfq-calculator

[4] TirMAZI, M., BARKER, A., DENG, N., HAQUE, M. E.,
QIN, Z. G., HAND, S., HARCHOL-BALTER, M., AND
WILKES, J. Borg: the next generation. In EuroSys
(2020), pp. 1-14.



	Introduction
	Our Model
	Main Results
	Evaluations
	References

